\qquad Date \qquad Period \qquad

Pre-Calculus Unit 2 Practice Test-Answers

Learning Target 2A-I can use multiple transformations to determine the graph from an equation or vice versa for linear and quadratic functions. (No Calculator)

1. Use transformations of $y=x^{2}$ to graph $f(x)=-(x-3)^{2}+2$.

Vertex: $(3,2)$

2. Write the equation of the graph below in vertex form.

$$
y=(x+2)^{2}-6
$$

3. Find the vertex form for the equation of the function that is produced when the function $f(x)=$ x^{2} is shifted right by 5 units and down by 8 .

$$
f(x)=(x-5)^{2}-8
$$

4. Find the vertex form for the equation of the function that is produced when the function $f(x)=$ $(x+2)^{2}-4$ is shifted right by 8 units and up by 1 .

$$
f(x)=(x-6)^{2}-3
$$

5. Find the vertex form for the equation of the function that is produced when the function $f(x)=$ x^{2} is flipped over the x-axis, shifted left 2 units, and down 5 units.

$$
f(x)=-(x+2)^{2}-5
$$

6. Find the equation for $f(x)=(x-2)^{2}+6$ flipped over the x-axis and also if it was flipped over the y-axis.

$$
\begin{aligned}
& x \text {-axis: } f(x)=-(x-2)^{2}-6 \\
& y \text {-axis: } f(x)=(-x-2)^{2}+6
\end{aligned}
$$

Learning Target 2B-I can identify linear and quadratic correlations in data and use technology to define an appropriate linear or quadratic regression function.
7. A local business has determined that the number of items they can sell in a week can be modeled by the function $n=160-5 p$. The revenue is determined by the function $r=p \cdot n$.
a. Use substitution to write a function for the revenue r in terms of the price p.

$$
\begin{aligned}
r & =p(160-5 p) \\
r & =1600 p-5 p^{2}
\end{aligned}
$$

b. At what price will the business make the most revenue? Explain how you know this is the maximum.

$$
\begin{gathered}
-\frac{b}{2 a}=-\frac{160}{2(-5)}=-\frac{160}{-10}=16 \\
p=\$ 16
\end{gathered}
$$

The maximum for a quadratic in standard form can be found by finding the vertex. The equation for the vertex is $-\frac{b}{2 a}$.
c. What is the maximum profit that the business will earn using this model?

$$
r=160(16)-5(16)^{2}=1280
$$

8. Write an equation that models the following function in the graph below.

$$
y=.21 x^{2}+.40 x-2.09
$$

9. Write an equation that models the following function in the graph to the right.

$$
y=.99 x-1.30
$$

10. Use the data in the table below to answer the following questions.

\boldsymbol{x}	1	2	3	4	5	6	7	8	9	10
\boldsymbol{y}	5.1	6.2	6.5	6.8	9.4	10.5	13.6	16.1	20.2	26.3

a. Write the equation for a quadratic function that models the data in the table.

$$
y=.29 x^{2}-1.07 x+6.61
$$

b. Use your regression model to predict y when $x=15$.

$$
y=.29(15)^{2}-1.07(15)+6.61=55.81
$$

11. Use the data in the table below to answer the following questions.

\boldsymbol{x}	-5	-4	-3	-2	-1	0	1	2	3	4
\boldsymbol{y}	-10	-8	-5	-2	0	0	4	6	7	10

a. Write the equation for a linear function that models the data in the table.

$$
y=2.17 x+1.28
$$

b. Use your regression model to predict y when $x=6$.

$$
y=2.17(6)+1.28=14.3
$$

Learning Target 2C-I can represent and apply power functions, with integer and rational powers, as equations and graphs. (No Calculator)
12. Find the values of m and n that would produce the graph to the right in the function $f(x)=(x-m)^{3}+n$.

$$
\begin{aligned}
& f(x)=(x+3)^{3}-2 \\
& m=-3 \text { and } n=-2
\end{aligned}
$$

13. Find the values of h and k that would produce the graph below in the function $g(x)=\sqrt{x-h}+k$.

14. A certain power function of the form $f(x)=k \cdot x^{a}$ for some integer a. The graph contains the point $(0,0)$ and the rest of the graph is in quadrant I and quadrant III. Describe the possible values for k and a in terms of positive, negative, even, or odd integers.

$k=$ positive and $a=$ odd

15. A certain power function of the form $f(x)=k \cdot x^{a}$ for some integer a. The graph does not contain the point $(0,0)$ and the rest of the graph is in quadrant I and quadrant II. Describe the possible values for k and a in terms of positive, negative, even, or odd integers.

$k=$ positive and $a=$ negative even integer

16. Graph $y=2 x^{\frac{1}{3}}$. (Rewrite as $2 \sqrt[3]{x}$ and made a table of values.)

17. Which graph(s) below would have an equation of the form $y=x^{\frac{1}{n}}$ for some integer n ? (D)

Learning Target 2D-I can identify key features of a parabola from its vertex form equation, and by converting a quadratic function from standard form to vertex form. (No Calculator)
18. Write a function for the graph below in standard form.

$$
\begin{gathered}
y=-(x+3)^{2}-1 \\
y=-(x+3)(x+3)-1 \\
y=-\left(x^{2}+6 x+9\right)-1 \\
y=-x^{2}-6 x-9-1 \\
y=-x^{2}-6 x-10
\end{gathered}
$$

19. Write a function for the graph below in standard form.

$$
\begin{gathered}
y=(x-2)^{2}+4 \\
y=(x-2)(x-2)+4 \\
y=x^{2}-4 x+4+4 \\
y=x^{2}-4 x+8
\end{gathered}
$$

20. Write $f(x)=x^{2}+2 x-3$ in vertex form. Identify the vertex of $f(x)$, the max/min value, and the axis of symmetry. Then graph the function.

$$
-\frac{2}{2(1)}=-1
$$

$$
f(-1)=1-2-3=-4
$$

$$
f(x)=(x+1)^{2}-4
$$

Vertex: (-1,-4) Min @ (-1,-4)
Axis: $x=-1$

21. Write $f(x)=-x^{2}-x+6.5$ in vertex form. Identify the vertex of $f(x)$, the max/min value, and the axis of symmetry.

$$
\begin{gathered}
\frac{1}{2(-1)}=-\frac{1}{2} \\
f\left(-\frac{1}{2}\right)=-\left(-\frac{1}{2}\right)^{2}+\frac{1}{2}+6.5 \\
-\frac{1}{4}+\frac{1}{2}+6.5 \\
-.25+.5+6.5 \\
-.25+7=6.75 \\
f(x)=-\left(x+\frac{1}{2}\right)^{2}+6.75 \\
\text { Vertex: }\left(-\frac{1}{2}, 6.75\right) \text { Max @ }\left(-\frac{1}{2}, 6.75\right) \text { Axis: } x=-\frac{1}{2}
\end{gathered}
$$

Applications

22. A promotion for the Houston Astros downtown ballpark, a competition is held to see who can throw a baseball the highest from the front row of the upper deck of seats, 83 feet above the field. The winner throws the ball with an initial vertical velocity of $92 \mathrm{ft} / \mathrm{sec}$ and it lands on the infield grass. Use the function $s(t)=s_{0}+v_{0} t-\frac{1}{2} g t^{2}$ and use the gravitation constant $g=32 \mathrm{ft} / \mathrm{sec} . \quad s(t)=83+92 t-\frac{1}{2}(32) t^{2}$
a. Find the maximum height of the ball.

$$
\begin{gathered}
-\frac{92}{2(-16)}=2.875 \\
s(2.875)=215.25 \text { feet }
\end{gathered}
$$

b. How long did it take for the ball to reach its maximum height?
2. 875 seconds
c. At what time (after $t=0$) will $s(t)=0$?

$$
\approx 6.5 \text { seconds }
$$

23. Write a quadratic equation in vertex form that starts at $(0,0)$ and goes through $(10,0)$.

Axis is $x=5$ because it is halfway between the points since they have the same y-value.

$$
\begin{gathered}
y=-(x-5)^{2}+k \\
0=-(10-5)^{2}+k \\
0=-25+k \\
k=25 \\
y=-(x-5)^{2}+25
\end{gathered}
$$

24. The table below shows the average price for a gallon of milk. Let $x=0$ stand for 1990, $x=1$ for 1991, and so forth.

Year	Price of Milk
1990	$\$ 2.78$
1995	$\$ 2.96$
2000	$\$ 5.00$
2005	$\$ 3.75$
2010	$\$ 3.19$

a. Find the linear regression model for the data. What does the slope in the regression model represent?

$$
y=.03 x+3.21
$$

The slope is the increase of price each year.
b. Use the linear regression model to predict the price of a gallon of milk for the year 2015.

$$
\begin{aligned}
x=25 \text { so } y & =.03(25)+3.21 \\
y & =\$ 3.96
\end{aligned}
$$

c. Find the quadratic regression model for the data.

$$
y=-.014 x^{2}+.305 x+2.533
$$

d. Use the quadratic regression model to predict the price of milk for the year 2015.

$$
\begin{gathered}
x=25 \text { so } y=-.014(25)^{2}+.305(25)+2.533 \\
y=\$ 3.78
\end{gathered}
$$

e. Which model best represents the price of milk. Explain.

Quadratic seems to be the better fit looking at the graph.

